Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 807021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211134

RESUMO

Ultrasonic (US) treatment is an efficient method to induce crop tolerance against heavy metal toxicity; however, US-induced aluminum (Al) tolerance in peanuts was rarely studied. This study was comprised of two treatments, namely, CK, without ultrasonic treatment, and US, an ultrasonic seed treatment, for 15 min. Both treated and non-treated treatments were applied with Al in the form of AlCl3.18H2O at 5 mmol L-1 in Hoagland solution at one leaf stage. Results depicted that plant height, main root length, and number of lateral roots increased significantly under US treatment. Transcriptome analysis revealed that plant hormone signal transduction and transcription factors (TFs) were significantly enriched in the differentially expressed genes (DEGs) in US treatment, and the plant hormones were measured, including salicylic acid (SA) and abscisic acid (ABA) contents, were substantially increased, while indole acetic acid (IAA) and jasmonic acid (JA) contents were decreased significantly in US treatment. The TFs were verified using quantitative real-time (qRT)-PCR, and it was found that multiple TFs genes were significantly upregulated in US treatment, and ALMT9 and FRDL1 genes were also significantly upregulated in US treatment. Overall, the US treatment induced the regulation of hormone content and regulated gene expression by regulating TFs to improve Al tolerance in peanuts. This study provided a theoretical rationale for US treatment to improve Al tolerance in peanuts.

2.
Sensors (Basel) ; 20(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842673

RESUMO

Vigor identification in sweet corn seeds is important for seed germination, crop yield, and quality. In this study, hyperspectral image (HSI) technology integrated with germination tests was applied for feature association analysis and germination performance prediction of sweet corn seeds. In this study, 89 sweet corn seeds (73 for training and the other 16 for testing) were studied and hyperspectral imaging at the spectral range of 400-1000 nm was applied as a nondestructive and accurate technique to identify seed vigor. The root length and seedling length which represent the seed vigor were measured, and principal component regression (PCR), partial least squares (PLS), and kernel principal component regression (KPCR) were used to establish the regression relationship between the hyperspectral feature of seeds and the germination results. Specifically, the relevant characteristic band associated with seed vigor based on the highest correlation coefficient (HCC) was constructed for optimal wavelength selection. The hyperspectral data features were selected by genetic algorithm (GA), successive projections algorithm (SPA), and HCC. The results indicated that the hyperspectral data features obtained based on the HCC method have better prediction results on the seedling length and root length than SPA and GA. By comparing the regression results of KPCR, PCR, and PLS, it can be concluded that the hyperspectral method can predict the root length with a correlation coefficient of 0.7805. The prediction results of different feature selection and regression algorithms for the seedling length were up to 0.6074. The results indicated that, based on hyperspectral technology, the prediction of seedling root length was better than that of seed length.


Assuntos
Germinação , Imageamento Hiperespectral , Sementes/fisiologia , Zea mays/fisiologia , Análise dos Mínimos Quadrados
3.
Sensors (Basel) ; 19(13)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266167

RESUMO

The maturity stage of bananas has a considerable influence on the fruit postharvest quality and the shelf life. In this study, an optical imaging based method was formulated to assess the importance of different external properties on the identification of four successive banana maturity stages. External optical properties, including the peel color and the local textural and local shape information, were extracted from the stalk, middle and tip of the bananas. Specifically, the peel color attributes were calculated from individual channels in the hue-saturation-value (HSV), the International Commission on Illumination (CIE) L*a*b* and the CIE L*ch color spaces; the textural information was encoded using a local binary pattern with uniform patterns (UP-LBP); and the local shape features were described by histogram of oriented gradients (HOG). Three classifiers based on the naïve Bayes (NB), linear discriminant analysis (LDA) and support vector machine (SVM) algorithms were adopted to evaluate the performance of identifying banana fruit maturity stages using the different optical appearance features. The experimental results demonstrate that overall identification accuracies of 99.2%, 100% and 99.2% were achieved using color appearance features with the NB, LDA and SVM classifiers, respectively; overall accuracies of 92.6%, 86.8% and 93.4% were obtained using local textural features for the three classifiers, respectively; and overall accuracies of only 84.3%, 83.5% and 82.6% were obtained using local shape features with the three classifiers, respectively. Compared to the complicated calculation of both the local textural and local shape properties, the simplicity and high accuracy of the peel color property make it more appropriate for identifying banana fruit maturity stages using optical imaging techniques.


Assuntos
Frutas/crescimento & desenvolvimento , Musa/crescimento & desenvolvimento , Imagem Óptica , Algoritmos , Teorema de Bayes , Cor , Análise Discriminante , Máquina de Vetores de Suporte
4.
Sensors (Basel) ; 18(12)2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30545028

RESUMO

Variety classification is an important step in seed quality testing. This study introduces t-distributed stochastic neighbourhood embedding (t-SNE), a manifold learning algorithm, into the field of hyperspectral imaging (HSI) and proposes a method for classifying seed varieties. Images of 800 maize kernels of eight varieties (100 kernels per variety, 50 kernels for each side of the seed) were imaged in the visible- near infrared (386.7⁻1016.7 nm) wavelength range. The images were pre-processed by Procrustes analysis (PA) to improve the classification accuracy, and then these data were reduced to low-dimensional space using t-SNE. Finally, Fisher's discriminant analysis (FDA) was used for classification of the low-dimensional data. To compare the effect of t-SNE, principal component analysis (PCA), kernel principal component analysis (KPCA) and locally linear embedding (LLE) were used as comparative methods in this study, and the results demonstrated that the t-SNE model with PA pre-processing has obtained better classification results. The highest classification accuracy of the t-SNE model was up to 97.5%, which was much more satisfactory than the results of the other models (up to 75% for PCA, 85% for KPCA, 76.25% for LLE). The overall results indicated that the t-SNE model with PA pre-processing can be used for variety classification of waxy maize seeds and be considered as a new method for hyperspectral image analysis.

5.
Biomed Eng Online ; 16(1): 46, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28412952

RESUMO

BACKGROUND: Ultrasound imaging plays an important role in computer diagnosis since it is non-invasive and cost-effective. However, ultrasound images are inevitably contaminated by noise and speckle during acquisition. Noise and speckle directly impact the physician to interpret the images and decrease the accuracy in clinical diagnosis. Denoising method is an important component to enhance the quality of ultrasound images; however, several limitations discourage the results because current denoising methods can remove noise while ignoring the statistical characteristics of speckle and thus undermining the effectiveness of despeckling, or vice versa. In addition, most existing algorithms do not identify noise, speckle or edge before removing noise or speckle, and thus they reduce noise and speckle while blurring edge details. Therefore, it is a challenging issue for the traditional methods to effectively remove noise and speckle in ultrasound images while preserving edge details. METHODS: To overcome the above-mentioned limitations, a novel method, called Rayleigh-maximum-likelihood switching bilateral filter (RSBF) is proposed to enhance ultrasound images by two steps: noise, speckle and edge detection followed by filtering. Firstly, a sorted quadrant median vector scheme is utilized to calculate the reference median in a filtering window in comparison with the central pixel to classify the target pixel as noise, speckle or noise-free. Subsequently, the noise is removed by a bilateral filter and the speckle is suppressed by a Rayleigh-maximum-likelihood filter while the noise-free pixels are kept unchanged. To quantitatively evaluate the performance of the proposed method, synthetic ultrasound images contaminated by speckle are simulated by using the speckle model that is subjected to Rayleigh distribution. Thereafter, the corrupted synthetic images are generated by the original image multiplied with the Rayleigh distributed speckle of various signal to noise ratio (SNR) levels and added with Gaussian distributed noise. Meanwhile clinical breast ultrasound images are used to visually evaluate the effectiveness of the method. To examine the performance, comparison tests between the proposed RSBF and six state-of-the-art methods for ultrasound speckle removal are performed on simulated ultrasound images with various noise and speckle levels. RESULTS: The results of the proposed RSBF are satisfying since the Gaussian noise and the Rayleigh speckle are greatly suppressed. The proposed method can improve the SNRs of the enhanced images to nearly 15 and 13 dB compared with images corrupted by speckle as well as images contaminated by speckle and noise under various SNR levels, respectively. The RSBF is effective in enhancing edge while smoothing the speckle and noise in clinical ultrasound images. In the comparison experiments, the proposed method demonstrates its superiority in accuracy and robustness for denoising and edge preserving under various levels of noise and speckle in terms of visual quality as well as numeric metrics, such as peak signal to noise ratio, SNR and root mean squared error. CONCLUSIONS: The experimental results show that the proposed method is effective for removing the speckle and the background noise in ultrasound images. The main reason is that it performs a "detect and replace" two-step mechanism. The advantages of the proposed RBSF lie in two aspects. Firstly, each central pixel is classified as noise, speckle or noise-free texture according to the absolute difference between the target pixel and the reference median. Subsequently, the Rayleigh-maximum-likelihood filter and the bilateral filter are switched to eliminate speckle and noise, respectively, while the noise-free pixels are unaltered. Therefore, it is implemented with better accuracy and robustness than the traditional methods. Generally, these traits declare that the proposed RSBF would have significant clinical application.


Assuntos
Aumento da Imagem/métodos , Ultrassonografia , Humanos , Funções Verossimilhança , Distribuição Normal , Razão Sinal-Ruído , Ultrassonografia Mamária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...